Earth and Planetary Science
EPS Planetary Science

DEC 2010 - Simulations predict water ice to become a metal at megabar pressures

Water ice is one of the most prevalent substances in the solar system, with the majority of it existing at high pressures in the interiors of giant planets. The known phase diagram of water is extremely rich, with at least fifteen crystal phases observed experimentally. In our article in Physical Review Letters (see also cond-mat), Hugh Wilson and I (Burkhard Militzer) explore the phase diagram of water ice by means of ab initio computer simulations and predict two new phases to occur at megabar pressures. In the figure from top to bottom, you see

  1. ice X the highest pressure phase seen in experiments,
  2. the Pbcm phase that was predicted with computer simulations in 1996,
  3. our new Pbca phase that transforms out of the Pbcmphase via a phonon instability at 7.6 Mbar, and finally
  4. our new Cmcm structure that is metallic and predicted to occur at 15.5 Mbar.

The known high pressure ice phases VII, VIII, X and Pbcmas well as our Pbca phase are all insulating and composed of two interpenetrating hydrogen bonded networks, but the Cmcm structure is metallic and consists of corrugated sheets of H and O atoms. The H atoms are squeezed into octahedral positions between next-nearest O atoms while they occupy tetrahedral positions between nearest O atoms in the ice X, Pbcm, and Pbca phases.